input image size -> 28x28x1 (width x height x channel)
W: image width
F: filter width
P: padding size
S: Stride number
[Example:]
input image (28 x 28 x 1)
convolution layer filter size (5 x 5) and 20 filters
stride = 1
padding = 0
So, the 1st output size is 24 x 24 x 20 (width x height x filters)
* Addition:
If there is max pooling layer after convolution filter,
W: input width
F: filter width
S: Stride number
input size (24 x 24 x 20)
max pooling layer filter size (2 x 2) and stride 2
So, the 1st max pooling output is 12 x 12 x 20 (width x height x filters)
반응형
'IT > machine learning' 카테고리의 다른 글
Use Tensorboard on Jupyter Notebook without CLI (0) | 2019.01.23 |
---|---|
tensorflow keras running error about initializers (0) | 2019.01.22 |
[pytorch] difference between torch.Tensor and torch.LongTensor (0) | 2018.07.06 |
gcp 에서 jupyter notebook 실행 (0) | 2018.02.23 |
GCP에서 VM 생성후 putty로 접속하는 방법 (0) | 2018.02.23 |